Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors
نویسندگان
چکیده
Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location of the bead relative to the sensor. Consequently, the signal from multiple beads also depends on their locations. Thus, a given coverage of the functionalized area with magnetic beads does not result in a given detector response, except on the average, over many realizations of the same coverage. We present a systematic theoretical analysis of how this location-dependence affects the sensor response. The analysis is done for beads magnetized by a homogeneous in-plane magnetic field. We determine the expected value and standard deviation of the sensor response for a given coverage, as well as the accuracy and precision with which the coverage can be determined from a single sensor measurement. We show that statistical fluctuations between samples may reduce the sensitivity and dynamic range of a sensor significantly when the functionalized area is larger than the sensor area. Hence, the statistics of sampling is essential to sensor design. For illustration, we analyze three important published cases for which statistical fluctuations are dominant, significant, and insignificant, respectively.
منابع مشابه
Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition
The formation of magnetic bead or nanoparticle superstructures due to magnetic dipole dipole interactions can be used as configurable matter in order to realize low-cost magnetoresistive sensors with very high GMR-effect amplitudes. Experimentally, this can be realized by immersing magnetic beads or nanoparticles in conductive liquid gels and rearranging them by applying suitable external magne...
متن کاملModel for detection of immobilized superparamagnetic nanosphere assay labels using giant magnetoresistive sensors
Commercially available superparamagnetic nanospheres are commonly used in a wide range of biological applications, particularly in magnetically assisted separations. A new and potentially significant technology involves the use of these particles as labels in magnetoresistive assay applications. In these assays, magnetic bead labels are used like fluorescent labels except that the beads are exc...
متن کاملThe BARC biosensor applied to the detection of biological warfare agents.
The Bead ARray Counter (BARC) is a multi-analyte biosensor that uses DNA hybridization, magnetic microbeads, and giant magnetoresistive (GMR) sensors to detect and identify biological warfare agents. The current prototype is a table-top instrument consisting of a microfabricated chip (solid substrate) with an array of GMR sensors, a chip carrier board with electronics for lock-in detection, a f...
متن کاملOn-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization
The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into accou...
متن کاملDesign and performance of GMR sensors for the detection of magnetic microbeads in biosensors
We are developing a biosensor system, the Bead ARray Counter (BARC), based on the capture and detection of micron-sized, paramagnetic beads on a chip containing an array of giant magnetoresistive (GMR) sensors. Here we describe the design and performance of our current chip with 64 sensor zones, compare its performance with the previous chip design, and discuss a simple analytical model of the ...
متن کامل